How a mushroom gets its glow

The enzyme that turns on the light for a glow-in-the-dark mushroom seems “promiscuous.” But in a good way.

Researchers have worked out new details of how two Neonothopanus fungi shine softly green at night. The team had earlier figured out that the basic starting material for bioluminescence in these fungi is a compound called hispidin, found in some other fungi as well as plants such as horsetails. Those plants don’t spontaneously give off light, but in the two Neonothopanus mushroom species, an enzyme rejiggers a form of hispidin into a compound that glows.

The enzyme that turns a fungus into a natural night-light isn’t that fussy as enzymes go, says Cassius V. Stevani of the University of São Paulo in Brazil. He and colleagues can tweak the compound that the enzyme normally reacts with and still get a glow, the researchers report April 26 in Science Advances.

This easygoing chemistry has allowed the team to develop blue to orange glows instead of just the natural yellowish-green. These bonus colors might mark the beginnings of a new labeling tool for molecular biologists, the researchers say.

New test may improve pancreatic cancer diagnoses

Pancreatic cancer is hard to detect early, when the disease is most amenable to treatment. But a new study describes a blood test that may aid the diagnosis of pancreatic cancer and someday make earlier screening feasible, the authors say.

The test detects a combination of five tumor proteins that appear to be a reliable signature of the disease, the researchers report in the May 24 Science Translational Medicine. In patients undergoing pancreatic or abdominal surgery, the test was 84 percent accurate at picking out those who had pancreatic cancer.
“What’s exciting about the study is that it further favors the belief that one biomarker by itself may not be able to successfully identify a disease,” says Raghu Kalluri, a cancer biologist at the University of Texas MD Anderson Cancer Center in Houston who was not involved in the study. By putting the five protein biomarkers together, he says, “the power of the analysis might be more beneficial in differentiating healthy individuals and ones with pancreatic cancer.”

The National Cancer Institute estimates that in 2017 there will be more than 53,000 new cases of pancreatic cancer in the United States and just over 43,000 deaths from the cancer. Individuals with the most common form of pancreatic cancer, called pancreatic ductal adenocarcinoma, have a five-year survival rate of less than 10 percent. The cancer is usually caught late because the symptoms, including weight loss and abdominal pain, often don’t arise until the cancer has spread. And current imaging technology can’t detect the cancer at the start, says study coauthor Cesar Castro, a translational oncologist at Massachusetts General Hospital in Boston.

“The unmet need here is finding some other form of detection before a cancer grows large enough for the CT scan to detect it,” Castro says.

In their hunt for better detection methods, the researchers turned to tumor-derived extracellular vesicles, small sacs shed by tumor cells that circulate in the bloodstream. The sacs “are almost like mini-mes” of the parent tumor, Castro says, because they contain proteins and genetic material that often match the tumor.

The researchers selected five promising protein biomarkers from tumor-derived extracellular vesicles. Using a gold-coated silicon chip covered with antibodies and sporting nanopores, the team tested how well the biomarkers signaled the presence of pancreatic cancer in plasma samples from patients. When light shining through the pores encountered the extracellular vesicles, bound to the chip because of the interaction between the protein biomarkers and the antibodies, the light’s wavelength changed — signaling the presence of a tumor.
In plasma samples taken from 43 patients before scheduled surgery for a medical issue in the pancreas or abdomen, the panel of five biomarkers distinguished pancreatic ductal adenocarcinoma from pancreatitis — an inflammation of the pancreas — and from benign cysts as well as from control patients’ samples. A pathology report after the surgeries confirmed the results.

Using their sensing device, the researchers report that the combined five biomarkers correctly identified whether a patient had pancreatic ductal adenocarcinoma or not in 84 percent of cases. The highest accuracy for any one of these biomarkers used by itself was just 70 percent.

The next step is to test patients at high risk for pancreatic cancer, and eventually those who are healthy, to see if these biomarkers are effective at early screening. “What we need to do now is pivot towards precancerous lesions,” Castro says. “Can they pick up any precancerous changes?”

“I’m excited about anything that can happen for these patients who are in desperate need for biomarkers and treatment,” Kalluri says. But he cautions that studies reporting the effectiveness of biomarkers as cancer screening tools often use different technologies for their assessments, making it hard for academic laboratories to reproduce the results. “There’s a tremendous lack of organized effort in the biomarker field,” he says, and if there is no way to come to a consensus on which biomarkers are most promising, “it’s very difficult for a patient to realize any benefit.”

Peru’s plenty brought ancient human migration to a crawl

Some of the earliest settlers of the Americas curtailed their coastal migration to hunker down in what’s now northwestern Peru, new finds suggest. Although researchers have often assumed that shoreline colonizers of the New World kept heading south from Alaska in search of marine foods, staying put in some spots made sense: Hunter-gatherers needed only simple tools to exploit rich coastal and inland food sources for thousands of years.

Excavations at two seaside sites in Peru find that people intermittently camped there from about 15,000 to 8,000 years ago, say anthropologist Tom Dillehay of Vanderbilt University in Nashville and his colleagues. Ancient people along Peru’s Pacific coast didn’t leave behind fishhooks, harpoons, nets or boats that could have been used to capture fish, sharks and sea lions, the scientists report May 24 in Science Advances. Yet remains of those sea creatures turned up at coastal campsites now buried beneath a human-made, earthen mound called Huaca Prieta and an adjacent mound called Paredones. Fish and other marine animals probably washed up on beaches or were trapped in lagoons that formed near the shore, Dillehay’s group proposes. Hungry humans needed only nets or clubs to subdue these prey.
Other marine foods found at the ancient Peruvian campsites included snails, crabs, clams, sea gulls and pelicans. Fragments of material woven out of rush plants, the earliest dating to between 10,600 and 11,159 years ago, may have come from fish traps or baskets, the researchers say.
Radiocarbon dating of burned wood, animal bones and plant seeds provided age estimates for a series of buried campsites at Huaca Prieta and Paredones.

Present-day hunters on Peru’s coast eat fish and small sharks that get trapped on the beach or in shallow shoreline lagoons. Hunters also build blinds where they wait to net and club birds, a tactic probably also used by ancient Americans, the investigators suspect.

Deer bones indicate that ancient Huaca Prieta and Paredones visitors hunted on land as well. And remains of avocado, beans and possibly cultivated squash and chili peppers at the ancient campsites — foods known to have been gathered or grown at inland locations — suggest that people transported these foods to the coast, possibly via trading.
Evidence that early New World settlers trekked back and forth from coastal to interior parts of Peru coincides with similar human movements in southern Chile more than 14,000 years ago (SN Online: 5/8/08). A team led by Dillehay uncovered seaweed fragments in hearths and structures at Monte Verde II, located 30 kilometers from Chile’s coast. Edible rushes, reeds and stones from the coast also turned up at Monte Verde II.

“Just as there was some contact with the sea at Monte Verde II, there was some contact with the interior at Huaca Prieta,” Dillehay says.

Simple stone tools, sharpened on one side, dominate implements excavated at the Peruvian sites and at Monte Verde II. Basic tools suitable for all sorts of cutting and scraping tasks fit a lifestyle in which people sought food across varied landscapes, the researchers contend.
Similar conditions may have characterized some North American coastlines by around 15,000 years ago, Dillehay says. “The problem is that these areas are now underwater” due to a global sea level rise between 20,000 and 6,000 years ago (SN: 8/13/11, p. 22).

Accumulating evidence supports the idea that early Americans favored the coast over an inland lifestyle, says archaeologist Daniel Sandweiss of the University of Maine in Orono. An ice-free corridor into North America’s interior may not have formed before 12,600 years ago (SN Online: 8/10/16), after people had reached Peru and Chile.

The pace at which people moved south from Huaca Prieta is unknown, Sandweiss says. Monte Verde II dates to roughly 500 years after the first coastal campsites in Peru, raising the possibility that Huaca Prieta folk founded the Chilean site, he suggests.

Dillehay doubts it. Modern hunter-gatherer groups vary greatly in size but usually don’t exceed several hundred members, making it unlikely that ancient Huaca Prieta and Paredones people were numerous enough to encounter food shortages, he says. Even if food ran out, hunter-gatherers only had to move a few kilometers north or south to find abundant grub. “We really don’t know where these people were coming and going,” Dillehay cautions.

Milky Way’s loner status is upheld

If the Milky Way exists in the biggest cosmic void ever observed, that could solve a puzzling mismatch between ways to measure how fast the universe is expanding.

Observations of 120,000 galaxies bolstering the Milky Way’s loner status were presented by Benjamin Hoscheit June 7 at a meeting of the American Astronomical Society in Austin, Texas. Building on earlier work by his adviser, University of Wisconsin‒Madison astronomer Amy Barger, Hoscheit and Barger measured how the density of galaxies changed with distance from the Milky Way.
In agreement with the earlier study, the pair found that the Milky Way has far fewer neighbors than it should. There was a rise in density about 1 billion light-years out, suggesting the Milky Way resides in an abyss about 2 billion light-years wide.

Simulations of how cosmic structures form suggest that most galaxies clump along dense filaments of dark matter, which are separated by vast cosmic voids.

If the Milky Way lives in such a void, it could help explain why the universe seems to be expanding at different rates depending on how it’s measured (SN: 8/6/16, p. 10). Measurements based on the cosmic microwave background, the earliest light in the universe, suggest one rate of expansion, while measurements of nearby supernovas suggest a faster one.

Those supernovas could be feeling an extra gravitational pull from all the matter at the edges of the void, Hoscheit says. The actual expansion rate is probably the slower one measured in the universe’s early light.

“If you don’t account for the void effects, you could mistake this relationship to indicate that there is too much expansion,” Hoscheit says.

Ladybugs fold their wings like origami masters

Those who struggle to fit a vacation wardrobe into a carry-on might learn from ladybugs. The flying beetles neatly fold up their wings when they land, stashing the delicate appendages underneath their protective red and black forewings.

To learn how one species of ladybug (Coccinella septempunctata) achieves such efficient packing, scientists needed to see under the bug’s spotted exterior. So a team from Japan replaced part of a ladybug’s forewing with a transparent bit of resin, to get a first-of-its-kind glimpse of the folding.
Slow-motion video of the altered ladybug showed that the insect makes a complex, origami-like series of folds to stash its wings, the scientists report in the May 30 Proceedings of the National Academy of Sciences. CT scans helped explain how the wings can be both strong enough to hold the insects aloft and easily foldable into a tiny package. The shape of the wing veins allows them to flex like a metal tape measure, making the wings stiff but bendable. Lessons learned from the wings could be applied to new technologies, including foldable aircraft wings or solar panels that unfurl from a spacecraft.

Satellite trio will hunt gravitational waves from space

The hunt for gravitational waves is moving upward. A space-based detector called the Laser Interferometer Space Antenna, or LISA, was selected as a mission in the European Space Agency’s science program, the agency announced June 20.

LISA will consist of three identical satellites arranged in a triangle that will cartwheel through space in orbit around the sun just behind Earth. The spacecraft will use lasers to detect changes in the distance between each satellite. Those changes would indicate the passage of gravitational waves, the ripples in spacetime that massive bodies such as black holes shake off when they move.

The spacecraft was originally planned as a joint mission between ESA and NASA, but NASA pulled out in 2011 citing budget issues. In December 2015, ESA launched a single satellite called LISA Pathfinder to test the concept — a test it passed with flying colors.

Interest in LISA increased in 2016 after researchers at the ground-based LIGO detectors announced that they had finally observed gravitational waves. LIGO is best suited for detecting the crash caused when dense objects such as neutron stars or solar-mass black holes collide.

LISA, on the other hand, will be sensitive to the collision of much more massive objects — such as the supermassive black holes that make up most galaxies’ cores.

The mission design and cost are still being completed. If all goes as planned, LISA will launch in 2034.

Climate change could exacerbate economic inequalities in the U.S.

Climate change may make the rich richer and the poor poorer in the United States.

Counties in the South face a higher risk of economic downturn due to climate change than their northern counterparts, a new computer simulation predicts. Because southern counties generally host poorer populations, the new findings, reported in the June 30 Science, suggest that climate change will worsen existing wealth disparities.

“It’s the most detailed and comprehensive study of the effects of climate change in the United States,” says Don Fullerton, an economist at the University of Illinois at Urbana-Champaign who was not involved in the work. “Nobody has ever even considered the effects of climate change on inequality.”
Researchers created a computer program called SEAGLAS that combined several climate simulations to forecast U.S. climate until 2100, assuming greenhouse gas emissions keep ramping up. Then, using data from previous studies on how temperature and rainfall affect several economic factors — including crop yields, crime rates and energy expenditures — SEAGLAS predicted how the economy of each of the 3,143 counties in the United States would fare.

By the end of the century, some counties may see their gross domestic product decline by more than 20 percent, while others may actually experience more than a 10 percent increase in GDP. This could make for the biggest transfer of wealth in U.S. history, says study coauthor Solomon Hsiang, an economist at the University of California, Berkeley.

In general, SEAGLAS predicts that counties in the lower Midwest, the South and the Southwest — already home to some of the country’s poorest communities — will bear the brunt of climate-caused economic damages, while counties in New England, the Great Lakes region and the Pacific Northwest will suffer less or see gains. For many of the examined economic factors, such as the number of deaths per year, “getting a little bit hotter is much worse if you’re already very hot,” explains Hsiang. “Most of the south is the hottest part of the country, so those are the regions where costs tend to be really high.”
The economic gaps may get stretched even wider than SEAGLAS predicts, Fullerton says, because the simulation doesn’t account for wealth disparities within counties. For example, wealthier people in poor counties may have access to air conditioning while their less fortunate neighbors do not. So blisteringly hot weather is most likely to harm the poorest of the poor.

Not all researchers, however, think the future is as bleak as SEAGLAS suggests. The simulation doesn’t fully account for adaptation to climate change, says Delavane Diaz, an energy and environmental policy analyst at the Electric Power Research Institute in Washington, D.C., a nonprofit research organization. For example, people in coastal regions could mitigate the cost of sea level rise by flood-proofing structures or moving inland, she says.

And the economic factors examined in this study don’t account for some societal benefits that may arise from climate change, says Derek Lemoine, an economist at the University of Arizona in Tucson. For instance, although crime rates rise when it’s warmer because more people tend to be out and about, people being active outside could have a positive impact on health.

But SEAGLAS is designed to incorporate different societal variables as new data become available. “I really like the system,” Lemoine says. “It’s a super ambitious work and the kind of thing that needs to be done.”

Borrowed genes give mums the blues

Mums are now a flower of a different color. Japanese researchers have added a hint of clear sky to the humble plant’s palette, genetically engineering the first-ever “true blue” chrysanthemum.

“Obtaining blue-colored flowers is the Holy Grail for plant breeders,” says Mark Bridgen, a plant breeder at Cornell University. The results are “very exciting.”

Compounds called delphinidin-based anthocyanin pigments are responsible for the natural blues in such flowers as pansies and larkspur. Mums lack those compounds. Instead, the flowers come in a variety of other colors, evoking fiery sunsets, new-fallen snow and all things chartreuse.
In previous attempts to engineer a blue hue in chrysanthemums — and roses and carnations — researchers inserted the gene for a key enzyme that controls production of these compounds, causing them to accumulate. But the resulting blooms skewed more violet-purple than blue.
True blue pigment remained elusive, scientists thought, because its origin was complex; multiple genes have been shown to be involved in its generation. But Naonobu Noda, of the National Agriculture and Food Research Organization in Tsukuba, Japan, and colleagues were surprised to find that inserting only two borrowed genes into chrysanthemums created blue flowers. One gene, from Canterbury bells, got the enzyme process started; the other, from butterfly peas, further tweaked the pigment molecules.

Together, the gene double-team transformed 19 of 32 mums, or 59 percent, of the Taihei variety from having pink or magenta blooms into blue beauties. Additional analyses revealed that the blue color arose because of molecular interactions between the tweaked pigment and certain colorless compounds naturally found in many plants, including chrysanthemums. The two-part method could possibly be used in the production of other blue flowers, the researchers report July 26 in Science Advances.

Gene editing creates virus-free piglets

Pigs are a step closer to becoming organ donors for people.

Researchers used molecular scissors known as CRISPR/Cas9 to snip embedded viruses out of pig DNA. Removing the viruses — called porcine endogenous retroviruses, or PERVs — creates piglets that can’t pass the viruses on to transplant recipients, geneticist Luhan Yang and colleagues report online August 10 in Science.

Yang, a cofounder of eGenesis in Cambridge, Mass., and colleagues had previously sliced 62 PERVs at a time from pig cells grown in the lab (SN: 11/14/15, p. 6). Many of the embedded viruses are already damaged and can’t make copies of themselves to pass on an infection. So in the new study, the researchers removed just 25 viruses that were still capable of infecting other cells.
The team had to overcome several technical hurdles to make PERV-less pig cells that still had the normal number of chromosomes. In a process similar to the one that created Dolly the Sheep (SN: 3/1/97, p. 132), researchers sucked the DNA-containing nuclei from the virus-cleaned cells and injected them into pig eggs. The technique, called somatic cell nuclear transfer, is better known as cloning. Embryos made from the cloned cells were transplanted to sows to develop into piglets.

The process is still not very efficient. Researchers placed 200 to 300 embryos in each of 17 sows. Only 37 piglets were born, and 15 are still living. The oldest are about 4 months old. Such virus-free swine could be a starting point for further genetic manipulations to make pig organs compatible with humans.

What happens in Earth’s atmosphere during an eclipse?

As the moon’s shadow races across North America on August 21, hundreds of radio enthusiasts will turn on their receivers — rain or shine. These observers aren’t after the sun. They’re interested in a shell of electrons hundreds of kilometers overhead, which is responsible for heavenly light shows, GPS navigation and the continued existence of all earthly beings.

This part of the atmosphere, called the ionosphere, absorbs extreme ultraviolet radiation from the sun, protecting life on the ground from its harmful effects. “The ionosphere is the reason life exists on this planet,” says physicist Joshua Semeter of Boston University.
It’s also the stage for brilliant displays like the aurora borealis, which appears when charged material in interplanetary space skims the atmosphere. And the ionosphere is important for the accuracy of GPS signals and radio communication.

This layer of the atmosphere forms when radiation from the sun strips electrons from, or ionizes, atoms and molecules in the atmosphere between about 75 and 1,000 kilometers above Earth’s surface. That leaves a zone full of free-floating negatively charged electrons and positively charged ions, which warps and wefts signals passing through it.
Without direct sunlight, though, the ionosphere stops ionizing. Electrons start to rejoin the atoms and molecules they abandoned, neutralizing the atmosphere’s charge. With fewer free electrons bouncing around, the ionosphere reflects radio waves differently, like a distorted mirror.
We know roughly how this happens, but not precisely. The eclipse will give researchers a chance to examine the charging and uncharging process in almost real time.

“The eclipse lets us look at the change from light to dark to light again very quickly,” says Jill Nelson of George Mason University in Fairfax, Va.

Joseph Huba and Douglas Drob of the U.S. Naval Research Laboratory in Washington, D.C., predicted some of what should happen to the ionosphere in the July 17 Geophysical Research Letters. At higher altitudes, the electrons’ temperature should decrease by 15 percent. Between 150 and 350 kilometers above Earth’s surface, the density of free-floating electrons should drop by a factor of two as they rejoin atoms, the researchers say. This drop in free-floating electrons should create a disturbance that travels along Earth’s magnetic field lines. That echo of the eclipse-induced ripple in the ionosphere may be detectable as far away as the tip of South America.

Previous experiments during eclipses have shown that the degree of ionization doesn’t simply die down and then ramp back up again, as you might expect. The amount of ionization you see seems to depend on how far you are from being directly in the moon’s shadow.

For a project called Eclipse Mob, Nelson and her colleagues will use volunteers around the United States to gather data on how the ionosphere responds when the sun is briefly blocked from the largest land area ever.
About 150 Eclipse Mob participants received a build-it-yourself kit for a small radio receiver that plugs into the headphone jack of a smartphone. Others made their own receivers after the project ran out of kits. On August 21, the volunteers will receive signals from radio transmitters and record the signal’s strength before, during and after the eclipse.
Nelson isn’t sure what to expect in the data, except that it will look different depending on where the receivers are. “We’ll be looking for patterns,” she says. “I don’t know what we’re going to see.”

Semeter and his colleagues will be looking for the eclipse’s effect on GPS signals. They would also like to measure the eclipse’s effects on the ionosphere using smartphones — eventually.

For this year’s solar eclipse, they will observe radio signals using an existing network of GPS receivers in Missouri, and intersperse it with small, cheap GPS receivers that are similar to the kind in most phones. The eclipse will create a big cool spot, setting off waves in the atmosphere that will propagate away from the moon’s shadow. Such waves leave an imprint on the ionosphere that affects GPS signals. The team hopes to combine high-quality data with messier data to lay the groundwork for future experiments to tap into the smartphone crowd.

“The ultimate vision of this project is to leverage all 2 billion smartphones around the planet,” Semeter says. Someday, everyone with a phone could be a node in a global telescope.

If it works, it could be a lifesaver. Similar atmospheric waves were seen radiating from the source of the 2011 earthquake off the coast of Japan (SN Online: 6/16/11). “The earthquake did the sort of thing the eclipse is going to do,” Semeter says. Understanding how these waves form and move could potentially help predict earthquakes in the future.